- Sep 17, 2003
- 8,628
- 18
- 38
By Eliza Volk
For generations women have been perceived as being the
weaker sex. But it is simply not true. Strength and
speed are not a monopoly of the male gender. Women and
men have the same capability to develop strength and
speed. Relative to fat-free body mass, women have
nearly the same strength as men. If one were to take
the same muscle unit from a woman and a man and put it
in an identical artificial environment with the same
growth media and the same stimulation, the muscles
would grow at the same rate. However, in the body the
hormonal and metabolic environment varies between men
and women. Women have smaller muscle fibers and
ordinarily have less overall muscle mass.
Nevertheless, women are gaining in rate of competitive
performance on a par with men in both speed and
strength.
There really are no specific gender-oriented strength
training programs. Generally, what works for men also
works for women. As mentioned previously, women have a
similar biological ability to develop strength as men
do, but will not acquire the same muscle mass due to
hormonal differences. Nevertheless, women will derive
the same benefits from most exercises that men do.
However, gender differences exist in the response to
strength training and there are several biomechanical
issues to consider for many movements. We will examine
the hormonal and physiological responses of women to
strength training and also biomechanical issues and
how they relate to training programs.
Hormones and the Body
The sex hormones largely contribute to the various
gender differences in most physiological responses to
training. Although both genders produce both
testosterone and estrogen hormones, the relative
ratios are significantly different. Men normally
produce higher levels (approximately 10 times that of
women) of testosterone and lower levels of estrogen.
Women produce the opposite. Most of the professional
female bodybuilders that grace the pages of muscle
magazines, gain their extreme muscle mass with the aid
of supplemental anabolic/androgenic steroids.
Federally classified as Schedule II drugs, their usage
carries legal ramifications as well as potential
physiological side effects.
Adolescent females begin to secrete larger amounts of
estrogen shortly at puberty, which has a significant
impact on body growth. The pelvis widens, breasts
form, and the body begins to lay down body fat.
Estrogen also increases the rate of bone growth, which
halts within two to four years after the onset of
puberty. Consequently, the female adolescent grows
rapidly for a few years after puberty and then stops
growing.
On the contrary, although testosterone secretion in
men stops at birth, it resumes at puberty. The young
male has a longer growth period and attains greater
height. The higher rate of testosterone in young men
produces increased muscle mass and bone compared to
women. As well, men develop broader shoulders,
narrower hips and greater chest girth. Men also tend
to deposit their body fat in the abdominal and back
area whereas women carry their body fat on their hips
and thighs.
Although both testosterone and estrogen are anabolic
(promoting the process where smaller units build
bigger units in the body), testosterone is primarily
responsible for increases in muscle tissue
hypertrophy. This, however, does not mean that the
female has little or no ability to gain muscle mass
and strength. Although weight training for women has
been historically disfavored because of its supposed
masculinizing effects, it is now well recognized as
valuable in developing strength and overall fitness.
Muscle and Strength
In terms of contractile characteristics and the
ability to produce force, muscle is identical in both
males and females. The differences that exist in
strength levels are primarily a function of total
muscle mass. Only 24 percent of the typical female
body is muscle mass, whereas the male is 40 percent
muscle mass.
Strength of the lower female body is similar to men’s
when relative to body weight and lean body mass. Men
are stronger in the upper extremities due to their
greater development of muscle mass in that area.
Because of this and the fact that a female typically
use the muscle mass in her lower body to a much
greater degree then she uses the muscle mass of her
upper body, the female is seldom as strong in absolute
measurements as the male.
Reproduction Cycle
The major issue in regards to physiology and women in
strength training is the reproduction cycle. While
there is little data to show that continuing an
exercise program after becoming pregnant is harmful
(although the intensity may have to be decreased),
there is some debate as to whether pregnancy is a good
time to begin anything but the mildest exercise
program. Considering the stress that a new exercise
program can cause by itself, starting an intensive
training program after becoming pregnant is usually
considered a poor idea.
For generations women have been perceived as being the
weaker sex. But it is simply not true. Strength and
speed are not a monopoly of the male gender. Women and
men have the same capability to develop strength and
speed. Relative to fat-free body mass, women have
nearly the same strength as men. If one were to take
the same muscle unit from a woman and a man and put it
in an identical artificial environment with the same
growth media and the same stimulation, the muscles
would grow at the same rate. However, in the body the
hormonal and metabolic environment varies between men
and women. Women have smaller muscle fibers and
ordinarily have less overall muscle mass.
Nevertheless, women are gaining in rate of competitive
performance on a par with men in both speed and
strength.
There really are no specific gender-oriented strength
training programs. Generally, what works for men also
works for women. As mentioned previously, women have a
similar biological ability to develop strength as men
do, but will not acquire the same muscle mass due to
hormonal differences. Nevertheless, women will derive
the same benefits from most exercises that men do.
However, gender differences exist in the response to
strength training and there are several biomechanical
issues to consider for many movements. We will examine
the hormonal and physiological responses of women to
strength training and also biomechanical issues and
how they relate to training programs.
Hormones and the Body
The sex hormones largely contribute to the various
gender differences in most physiological responses to
training. Although both genders produce both
testosterone and estrogen hormones, the relative
ratios are significantly different. Men normally
produce higher levels (approximately 10 times that of
women) of testosterone and lower levels of estrogen.
Women produce the opposite. Most of the professional
female bodybuilders that grace the pages of muscle
magazines, gain their extreme muscle mass with the aid
of supplemental anabolic/androgenic steroids.
Federally classified as Schedule II drugs, their usage
carries legal ramifications as well as potential
physiological side effects.
Adolescent females begin to secrete larger amounts of
estrogen shortly at puberty, which has a significant
impact on body growth. The pelvis widens, breasts
form, and the body begins to lay down body fat.
Estrogen also increases the rate of bone growth, which
halts within two to four years after the onset of
puberty. Consequently, the female adolescent grows
rapidly for a few years after puberty and then stops
growing.
On the contrary, although testosterone secretion in
men stops at birth, it resumes at puberty. The young
male has a longer growth period and attains greater
height. The higher rate of testosterone in young men
produces increased muscle mass and bone compared to
women. As well, men develop broader shoulders,
narrower hips and greater chest girth. Men also tend
to deposit their body fat in the abdominal and back
area whereas women carry their body fat on their hips
and thighs.
Although both testosterone and estrogen are anabolic
(promoting the process where smaller units build
bigger units in the body), testosterone is primarily
responsible for increases in muscle tissue
hypertrophy. This, however, does not mean that the
female has little or no ability to gain muscle mass
and strength. Although weight training for women has
been historically disfavored because of its supposed
masculinizing effects, it is now well recognized as
valuable in developing strength and overall fitness.
Muscle and Strength
In terms of contractile characteristics and the
ability to produce force, muscle is identical in both
males and females. The differences that exist in
strength levels are primarily a function of total
muscle mass. Only 24 percent of the typical female
body is muscle mass, whereas the male is 40 percent
muscle mass.
Strength of the lower female body is similar to men’s
when relative to body weight and lean body mass. Men
are stronger in the upper extremities due to their
greater development of muscle mass in that area.
Because of this and the fact that a female typically
use the muscle mass in her lower body to a much
greater degree then she uses the muscle mass of her
upper body, the female is seldom as strong in absolute
measurements as the male.
Reproduction Cycle
The major issue in regards to physiology and women in
strength training is the reproduction cycle. While
there is little data to show that continuing an
exercise program after becoming pregnant is harmful
(although the intensity may have to be decreased),
there is some debate as to whether pregnancy is a good
time to begin anything but the mildest exercise
program. Considering the stress that a new exercise
program can cause by itself, starting an intensive
training program after becoming pregnant is usually
considered a poor idea.